TRADING HACKATHON CHALLENGE PROPOSAL

J.P. Morgan AI Research
email@jpmchase.com

ABSTRACT

This hackathon aims to let participants build an equity trading algorithm that maximizes profit by
buying and selling stocks, like managing an investment portfolio. Participants will be provided access
to a certain number of years of historical data for a group of up to 500 stocks. Participants’ algorithms
should review the daily price data and generate orders to buy or sell stocks.

1 About The Data

The data for this hackathon is a synthetic version of the S&P 500, created by Al Research’s Synthetic Data group. It is
intended to be a synthetic market version that can be used for testing trading algorithms. It is modeled after real data,
with accurate similarities and correlations between groups of stocks. The data traders use to inform their trading is
classified as "financial data" and "market data." Financial data includes information about a company’s financial health,
industry, and macroeconomic factors. Market data focuses on historical price and volume information. Traders analyze
these data to make informed decisions about buying and selling stocks.

1.1 Market Data

The market data for this project is provided as a comma-separated-values (CSV) file, where each row represents the
data for one day. An example looks like this:

Date AAPL IBM JPM TSLA
2005-01-03 | 52.2773 | 86.8520 | 60.4727 | 2.6500
2005-01-04 | 51.7295 | 85.7908 | 60.4137 | 2.6015
2005-01-05 | 52.0064 | 85.1988 | 60.3900 | 2.5867
2005-01-06 | 52.0417 | 85.6319 | 60.4313 | 2.5740
2005-01-07 | 52.1596 | 85.5092 | 60.4137 | 2.5570
2005-01-10 | 52.2420 | 85.9135 | 60.3841 | 2.5660
2005-01-11 | 52.5484 | 85.3215 | 60.4668 | 2.5888
2005-01-12 | 52.6191 | 85.6031 | 60.5553 | 2.5810

Table 1: A market data example with five tickers

The column headers indicate the ticker or symbol for each stock, as shown in Table|l} Each row starts with a time stamp
(date) and then prices for each stock for that day. These prices represent closing prices for the stocks on that day. The
executed prices for all trading orders are defined as the closing prices on that day.

1.2 Financial Data

The financial data used by traders for investing generally falls into four categories: Fundamental, Technical, Sentiment,
and Macroeconomic:

» Fundamental Analysis: This approach involves evaluating a company’s financial health, competitive position,
and overall economic environment.

» Technical Analysis: This approach involves analyzing historical price and volume data to identify patterns
and trends suggesting future price movements.

* Market Sentiment: Stock traders analyze market sentiment data, such as investor surveys, put-call ratios, and
short interest, to gauge investor sentiment and identify potential contrarian trading opportunities. News feeds
may also provide sentiment information.

* Macroeconomic Indicators: Stock traders consider the overall economic environment by analyzing GDP
growth, inflation, interest rates, and employment figures to identify how these factors may impact a company’s
performance.

For instance, when developing trading strategies at a hedge fund, all this incoming data is analyzed, condensed, and
summarized into daily values for each stock. These numbers are called "features,” "indicators,” or "signals.” Then,
all this data is provided to the trading algorithm for determining trades. To simplify the project, we will precompute
the values for five indicators and provide them to participants for each stock in a CSV file named for that stock. For
instance, the file providing information about IBM is named IBM.CSYV, and it looks like this:

Date indicatorO1 | indicator02 | indicatorO3 | indicatorO4 | indicator(O5
2005-01-03 0.2773 1.8520 0.4727 1.6500 0.2773
2005-01-04 0.7295 1.7908 0.4137 0.6015 1.7908
2005-01-05 0.0064 1.1988 0.3900 0.5867 0.3900
2005-01-06 0.0417 -2.6319 -0.4313 -0.5740 -2.6319
2005-01-07 -0.1596 1.5092 0.4137 -1.5570 -0.1596
2005-01-10 1.2420 1.9135 0.3841 0.5660 1.9135
2005-01-11 0.5484 1.3215 -0.4668 1.5888 -0.4668
2005-01-12 0.6191 1.6031 0.5553 2.5810 1.6031

Table 2: A financial data example with five indicators

The values for the indicators are always numbers, and they may be positive or negative. We’re not providing more
information for the participants about these indicators or their meaning except that if the participants’ algorithms are
good, they can extract actionable information and make a certain profit.

2 The Task For Participants

Participants’ trading algorithms should operate in the following way and follow these rules:

* The program should read over 500 files, as follows:

— The market data — one file.
— the financial data — about 500 files.

— A strategy file that describes how the participants’ algorithm should behave. The format and structure of
this file can take any form.

* Assume the participants start with $1, 000, 000 in cash.
* Participants’ program should output a trades file, named "trades.csv", that lists the trades it would like to make
for each day.

The "trades.csv" file should be formatted like this:

Date AAPL | IBM | JPM | TSLA
2005-01-03 0 0 0 0
2005-01-04 100 0 0 0
2005-01-05 0 0 0 -100
2005-01-06 0 0 0 0
2005-01-07 0 0 0 0
2005-01-10 | -100 0 0 0
2005-01-11 0 0 0 0
2005-01-12 0 0 0 100

Table 3: A "trades.csv" file format example

The numbers on each row for each stock indicate how many shares the participants would like to trade in that stock on
that day. Participants will get the closing price for the stock on that day. A "0” indicates no trading on that day, positive
numbers indicate a "BUY” order with that number of shares, and negative numbers indicate a "SELL” order.

3 Rules And Evaluation

We will provide a market simulator to read participants’ trade and market data files and simulate the trades with our
testing algorithm. Some metrics for evaluating the trading performance will be provided. We will evaluate each
algorithm according to its Sharpe ratio and total return. We will also provide awards and rankings on each of those
metrics. We also set certain rules for participants’ trading algorithms:

* Portfolio leverage should not exceed 1.0. For instance, at the beginning of the simulation, participants can only
buy $1M in stocks with the $1M cash. Any requested trades that lead to a violation of the leverage restriction
will be ignored.

* Shorting is allowed, which means participants can "sell” stocks before buying them.

We use the following equation to determine how leveraged it is. In general, using leverage means a participant borrows
money to increase the size of the portfolio:

L = (lv + abs(sv))/(lv + cash — abs(sv)) (1)

* L is portfolio leverage.

* [v is the total value of all the long positions.
* sv is the total value of all the short positions.
* cash is the value of cash in the portfolio.

Examples:

o If a participant starts with $100 and purchases $100 of stock, the leverage is 1.0.
o If a participant starts with $100 and purchases $100 of stock and shorts $100 of stock, the leverage is 2.0.

To simplify this problem, we have made the following assumptions that may not hold in the real world:

* No transaction costs — we don’t charge a trading fee.
* No market impact — participants’ trades don’t affect the rest of the market.

* Participants can observe the market close price and execute on it.

4 Hackathon Files And Procedure

Participants will be provided with 20 folders of data. The folders are in two groups: "training” and "testing”, e.g.,
trainingO1 to training10 and testingO1 to testing10. Participants can use the data in the training folders to train or
develop trading algorithms. Each folder will contain about 501 files (1 market and 500 financial data). The data in each
folder covers the same period, from January 2022 to December 2022.

Participants’ algorithms must follow these rules:

* No peeking into the future — the algorithm should step through the data daily and make trading decisions only
on the data up to and including that day. It should not, for instance, look ahead to a future price to make a
trade in anticipation of that future price.

o If the trading algorithm is learning or adaptive, the participant should reset it before running it on each test
set. For instance, the algorithm should not learn from data in testing01 in anticipation of running on data in
testing02.

* Deterministic — given the same data, the algorithm should always output the same trades. Participants can use
a random number generator, which should be initialized with the same seed each time.

 Use of data — participants should NOT allow their trading algorithms to look at the data in the testing folders
until the trading strategies or algorithms have been finalized.

* If participants choose to revise or improve the trading algorithm, for instance, by learning or retraining, they
should ONLY use the training data for that purpose. Participants should never train on the testing data.

* Participants should run the same trading algorithm on all the testing data. Don’t optimize trading algorithms
for each folder.

	About The Data
	Market Data
	Financial Data

	The Task For Participants
	Rules And Evaluation
	Hackathon Files And Procedure

